Paper ID:

3	0	2	4

Roll No. \square

B TECH

(SEM III) THEORY EXAMINATION 2017-18 FUNDAMENTALS OF NETWORK ANALYSIS AND SYNTHESIS

Time: 3Hours
Max. Marks: 100
Note: Attempt all Sections.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$
a) Determine the function for the given waveform-

b) Write the properties of RC driving point function?
c) What are the different types of network function?
d) What is the condition for Symmetry of y-parameter and t-parameter?
e) What are the properties of Hurwitz polynomial?
f) Draw the waveform represented by the following function-
g) $\quad \mathrm{f}_{1}(\mathrm{t})=(\mathrm{t}-1) \mathrm{u}(\mathrm{t}-1)($ ii $) \mathrm{f}_{2}(\mathrm{t})=\mathrm{tu}(\mathrm{t}+\mathrm{T})$
h) Write down the statement for Norton theorem with example?
i) Write the T-parameter in terms of Z-parameter?
j) What is the difference between active and passive filters?

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$
a) What is initial and final condition of network elements? Find $i(t)$ for $t>0$ when switch is opened at $\mathrm{t}=0$?

b) Obtain Voltage ratio transfer function for the given network-

c) For the given network function, draw pole-zero diagram and obtain the time domain response $\mathrm{i}(\mathrm{t}) . I(\mathrm{~s})=\frac{s^{2}+4 s+3}{s^{2}+2 s}$
d) Find the Y-parameter for the network-

e) Test given function $\mathrm{F}(\mathrm{s})$ for positive realness?

$$
F(s)=\frac{2 s^{3}+2 s^{2}+3 s+2}{s^{2}+1}
$$

SECTION C

3. Attempt any one part of the following:

a) The circuit shown is figure has the switch S opened at $t=0$. Solve for $v, d v / d t$ and $d^{2} t / d t^{2}$ at $t=0+$, if $\mathrm{I}=1 \mathrm{AR}=100 \Omega$ and $\mathrm{L}=1 \mathrm{H}$. Also find the expression for $\mathrm{v}(\mathrm{t})$.

b) Write the expression for the waveform shown in the figure-
(i)

(ii)

a) Find the current through 20Ω resistor using Thevenin theorem-

b) Find the T-parameter using the concept of interconnection of two given network-

5. Attempt any one part of the following:
a) What are the properties of Positive real function? Test whether the polynomial is Hurwitz or not? $F(s)=s^{7}+2 s^{6}+2 s^{5}+s^{4}+4 s^{3}+8 s^{2}+8 s+4$
b) Realize the Cauer forms of the following impedance function-

$$
Z(s)=\frac{4\left(s^{2}+1\right)\left(s^{2}+9\right)}{s\left(s^{2}+4\right)}
$$

6. Attempt any one part of the following:
a) Define the zeros of transmission? Identify the zeros of transmission of the given network-

b) Synthesize $Y_{21}(s)=\frac{s^{2}}{s^{3}+3 s^{2}+3 s+2}$ with 1Ω termination?
7. Attempt any one part of the following:
a) Design first order high pass active filter and draw its frequency response?
b) Discuss the Non-inverting VCCS and CCVS circuit?
